Gaps of Smallest Possible Order between Primes in an Arithmetic Progression

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Primes in arithmetic progression

Prime numbers have fascinated people since ancient times. Since the last century, their study has acquired importance also on account of the crucial role played by them in cryptography and other related areas. One of the problems about primes which has intrigued mathematicians is whether it is possible to have long strings of primes with the successive primes differing by a fixed number, namely...

متن کامل

Gaps between Prime Numbers and Primes in Arithmetic Progressions

The equivalence of the two formulations is clear by the pigeon-hole principle. The first one is psychologically more spectacular: it emphasizes the fact that for the first time in history, one has proved an unconditional existence result for infinitely many primes p and q constrained by a binary condition q − p = h. Remarkably, this already extraordinary result was improved in spectacular fashi...

متن کامل

Small gaps between primes

The twin prime conjecture states that there are infinitely many pairs of distinct primes which differ by 2. Until recently this conjecture had seemed to be out of reach with current techniques. However, in 2013, the author proved that there are infinitely many pairs of distinct primes which differ by no more than B with B = 7 · 107. The value of B has been considerably improved by Polymath8 (a ...

متن کامل

Bounded gaps between primes

It is proved that lim inf n→∞ (pn+1 − pn) < 7× 10, where pn is the n-th prime. Our method is a refinement of the recent work of Goldston, Pintz and Yildirim on the small gaps between consecutive primes. A major ingredient of the proof is a stronger version of the Bombieri-Vinogradov theorem that is applicable when the moduli are free from large prime divisors only (see Theorem 2 below), but it ...

متن کامل

Long Gaps between Primes

Let pn denotes the n-th prime. We prove that max p n+16X (pn+1 − pn) ≫ logX log logX log log log logX log log logX for sufficiently large X , improving upon recent bounds of the first three and fifth authors and of the fourth author. Our main new ingredient is a generalization of a hypergraph covering theorem of Pippenger and Spencer, proven using the Rödl nibble method. CONTENTS

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Mathematics Research Notices

سال: 2016

ISSN: 1073-7928,1687-0247

DOI: 10.1093/imrn/rnw013